Convergence Rate of Some Two-Step Iterative Schemes in Banach Spaces

dc.contributor.authorWahab, O. T.
dc.contributor.authorOlawuyi, R. O.
dc.contributor.authorRAUF, K.
dc.contributor.authorUsamot, I. F.
dc.date.accessioned2023-08-09T13:09:31Z
dc.date.available2023-08-09T13:09:31Z
dc.date.issued2016-09-09
dc.description.abstractThis article proves some theorems to approximate fixed point of Zamfirescu operators on normed spaces for some two-step iterative schemes, namely, Picard-Mann iteration, Ishikawa iteration, S-iteration, and Thianwan iteration, with their errors. We compare the aforementioned iterations using numerical approach; the results show that S-iteration converges faster than other iterations followed by Picard-Mann iteration, while Ishikawa iteration is the least in terms of convergence rate. These results also suggest the best among two-step iterative fixed point schemes in the literature.
dc.identifier.citationO. T. Wahab, R. O. Olawuyi, K. Rauf, I. F. Usamot (2016), Convergence Rate of Some Two-Step Iterative Schemes in Banach Spaces, Journal of Mathematics Volume 2016, Article ID 9641706, 8 pages.
dc.identifier.urihttp://dx.doi.org/10.1155/2016/9641706
dc.identifier.urihttps://kwasuspace.kwasu.edu.ng/handle/123456789/793
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.titleConvergence Rate of Some Two-Step Iterative Schemes in Banach Spaces
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9641706.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: