Mixing Index of a Starch Composite Extruder for Food Packaging Application

Loading...
Thumbnail Image
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
CRC press
Abstract
This encapsulates the performance of a single-screw extruder for use in the mixing and homog-enization of the composite of cassava starch (1000 g),glycerol (45%‒55% w/v), and zinc oxide nanopar-ticles (0%‒2% w/v), based on the mixing index and rate constant. The machine was designed such that itcan accommodate two diameters (5 and 7 mm) in thebreaker plate; the output/1000 g of the starch compos-ite was determined at a resident time of 5  min over aperiod of 1 h machine operation. The research revealedthat the composite containing 55% w/v glycerol, 1% w/vzinc nanoparticles and 5 mm diameter of the holes inthe breaker plate has the highest mixing rate constant(k = 0.527). Decay trends were observed as the mixing index increases with an increase in the resident time in the range of 45%–55% w/v glycerol concentration and a decrease in the output per 1000 g of the starch compos-ite through both the 5 and 7 mm diameters of the hole of the breaker plate. The optimum output of the machine, whose desirability function is closer to the optimization goal, gave 0.53/1000 g. The amount of unmixed com-posite was significantly lower than the machine output and thus the single-screw extruder can be used to quan-tify and monitor mixing behavior of starch composites in the food industry.
Description
Keywords
Citation