Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yusuff R. Shakirat"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Empirical Analysis of Data Sampling-Based Ensemble Methods in Software Defect Prediction
    (Springer International Publishing, 2022-07-04) Balogun O. Abdullateef; Odejide J. Babajide; Bajeh O. Amos; Alanamu O. Zubair; Usman-Hamza E. Fatima; Adeleke O. Hammid; Mabayoje A. Modinat; Yusuff R. Shakirat
    This research work investigates the deployment of data sampling and ensemble techniques in alleviating the class imbalance problem in software defect prediction (SDP). Specifically, the effect of data sampling techniques on the performance of ensemble methods is investigated. The experiments were conducted using software defect datasets from the NASA software archives. Five data sampling methods (over-sampling techniques (SMOTE, ADASYN, and ROS), and undersampling techniques (RUS and NearMiss) were combined with bagging and boosting ensemble methods based on Naïve Bayes (NB) and Decision Tree (DT) classifier. Predictive performances of developed models were assessed based on the area under the curve (AUC), and Matthew’s correlation coefficient (MCC) values. From the experimental findings, it was observed that the implementation of data sampling methods further enhanced the predictive performances of the experimented ensemble methods. Specifically, BoostedDT on the ROS-balanced datasets recorded the highest average AUC (0.995), and MCC (0.918) values respectively. Aside NearMiss method, which worked best with the Bagging ensemble method, other studied data sampling methods worked well with the Boosting ensemble technique. Also, some of the developed models particularly BoostedDT showed better prediction performance over existing SDP models. As a result, combining data sampling techniques with ensemble methods may not only improve SDP model prediction performance but also provide a plausible solution to the latent class imbalance issue in SDP processes.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng