Browsing by Author "Tiniakov Dmytro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemInvestigation of the Influence of Geometrical Parameters on The Take-off Mass of Unmanned Aircraft Wing(АКТУАЛЬНІ ПИТАННЯ СУЧАСНОЇ НАУКИ. ІІ МІЖНАРОДНА НАУКОВО-ПРАКТИЧНА КОНФЕРЕНЦІЯ, 2014-10-24) Jinadu Abdulbaqi; Tiniakov Dmytro; Koloskov VolodymyrThe aim for carrying out investigation on the wing parameters of an unmanned aircraft take-off mass is to look for its geometrical and structural weakness so as to be able calculate and deduce new parameters that will increase the general performance of the aircraft, thus reducing its take-off mass. These parameters include the relative airfoil thickness, aspect ratio, taper ratio and sweep angle. Along the line in the research, limits are used to define load factor and landing speed. These limits are used, as when displayed on the graph, give the ability to determine the minimal mass within the limit range.
- ItemOptimization of Aircraft Fuel Dump Rate towards the Mitigation of Post-Impact Fire(Defect and Diffusion Forum1662, 2023-06-06) Jinadu Abdulbaqi; Olayemi Adebayo Olalekan; Daniel Joshua; Odenibi John Oluwatomiwa; Tiniakov Dmytro; Koloskov VolodymyrThis study seeks to improve the utilization of compressed air towards a faster fuel jettisoning, to increase the survival rate of passengers in the event of an accident or aborted takeoffs by augmenting the already existing means of dumping fuel with no considerable increase in overall weight. The aircraft fuel dump sub-system was isolated, this process was achieved with the aid of the venturi effect. A jet which provides a direct connection between the fuel tank and the mixing chamber sucks fuel from the tank, where bypassed air from the compressor expels the sucked air in fine particles. After running the simulation, the mass flow rate was computed. The compressed air inlet has a mass flow rate of 58.5193(Kg/S), the kerosene inlet 1.2385(Kg/S) while the outlet has a relative value of-59.6541(Kg/S).This study seeks to improve the utilization of compressed air towards a faster fuel jettisoning, to increase the survival rate of passengers in the event of an accident or aborted takeoffs by augmenting the already existing means of dumping fuel with no considerable increase in overall weight. The aircraft fuel dump sub-system was isolated, this process was achieved with the aid of the venturi effect. The engine compressor marks the start of the aircraft fuel dump sub-system while an exterior nozzle for displacing the fuel marks its end. This system achieved jettisoning through bled-off air from the compressor, passing through a converging-diverging nozzle (primary supersonic nozzle), thereby creating a vacuum in the mixing chamber. A jet that provides a direct connection between the fuel tank and the mixing chamber sucks fuel from the tank, where bypassed air from the compressor expels the sucked air in fine particles. After running the simulation, the mass flow rate was computed. The compressed air inlet has a mass flow rate of 58.5193(Kg/s), and the kerosene inlet 1.2385(kg/s) while the outlet has a relative value of -59.6541(kg/s).