Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sunday E. Elaigwu"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Green Route Synthesis and Adsorption Studies of Copper-Benzimidazole Coordination Polymer for Removal of Methyl Orange from Water
    (2023) Janet T. Bamgbose; Sunday E. Elaigwu; Vincent O. Adimula; Habeeb O. Okeowo; Victoria T. Olayemi; Olanrewaju A. Ameen; Anthony O. Oyediran; Olusegun A. Odunola; Ezekiel G. Adeyeni; Ayodele D. Adeyemi; Adedibu C. Tella
  • Loading...
    Thumbnail Image
    Item
    Mn(II), Fe(III) and Ni (II) Complexes of Mixed Citric acid - Sulphamethoxazole: Synthesis, Characterization and Antibacterial activity
    (Sciendo, 2023-02-28) Amudat Lawal; Seyi Olowude; Abdullahi O. Rajee; Sunday E. Elaigwu; Mercy O. Bamibgoye; Haizat O. Saadu; Amos Mamman; Halimat F. Babamale; Muslimat T. Yunus-Issa; Saliu A. Amolegbe
    Three mixed ligand complexes of sulphamethoxazole and citric acid have been synthesized using Mn(II), Fe(III) and Ni(II) chlorides. The complexes were characterized by elemental analysis, melting point, conductivity test, magnetic measurement, UV-Visible and infrared spectroscopy. The infrared spectra data revealed that the ligands act as bidentate, in which citric acid coordinate through C=O of the carboxyl and oxygen of the hydroxyl groups, while sulphamethoxazole coordinates through nitrogen atom of the primary amine group and O=S=O of the sulphonyl group. The result of the elemental analysis was consistent with the proposed pattern for the complexes, while the melting point determination confirmed that the synthesized compounds were pure. Antibacterial activity of metal complexes were screening against five strain bacteria microorganism of g(+)Pseudomonas aeruginosa, Eschericia coli, g(+)Klebsiella pneumonia, g(+)Staphylococcus aureus and g(+)Candida using Muller Hinton diffusion method. The result showed that the overall zone of inhibition against bacterial isolate follows an increasing order of priority Fe(III)˃ Ni(II)˃ Mn(II) complexes.
  • Loading...
    Thumbnail Image
    Item
    Synthesis of metal–organic frameworks (MOFs) MIL-100(Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution
    (2021) Adedibu C. Tella; Janet T. Bamgbose; Vincent O. Adimula; Mary Omotoso; Sunday E. Elaigwu; Victoria T. Olayemi; Olusegun A. Odunola
    AbstractThe interaction of eosin B dye from aqueous solution with MIL-100(Fe) and functionalized MIL-100(Fe) metal–organic frameworks (MOFs) is reported in this study. MIL-100(Fe) was prepared and functionalized with thioglycolic acid (TH) and ethylenediammine (ED) separately by incorporating the thiol (–SH) and the amine (–NH2) group of the functionalizing agents into the open metal sites of the MIL-100(Fe) to obtain the acidic (TH-MIL-100) and basic (ED-MIL-100) forms of the MOF respectively. Characterization of the MOFs was done by melting point analysis, elemental analysis, spectroscopic techniques, scanning electron microscopy (SEM), and powdered X-ray diffraction (PXRD) analysis. The adsorption experiments were carried out at different conditions such as pH, adsorbent dosage, contact time, temperature, and initial concentration of the dye to estimate the optimum conditions and the maximum adsorption capacities. Adsorption capacities were observed to increase in the order of ED-MIL-100 < MIL-100 < TH-MIL-100, while the TH-MIL-100 was the most effective in the removal process due to acid–base interaction between the acidic thiol group (–SH) and the alkaline medium of eosin B dye solution. The Langmuir Isotherm was seen to fit well to adsorption data obtained for all three adsorbent materials studied, and adsorption processes followed the pseudo-second order kinetics. This study, therefore, indicates the suitability of functionalization of MIL-100(Fe) towards improving its adsorption capacity.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng