Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shuaib, M.U."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Development of an Intrusion Detection System using ANOVA Feature Selection and Support Vector Machine Algorithms
    (Journal Press India - COMPUTOLOGY: Journal of Applied Computer Science and Intelligent Technologies, 4(1), 89 – 108, 2024) Edafeajiroke, M.F.; Abdulsalam, S.O.; Shuaib, M.U.; Babatunde, R.S.
    The escalating sophistication and frequency of cyber-attacks have necessitated the development of more advanced intrusion detection systems (IDS). This research presents the development of an innovative IDS employing Analysis of Variance (ANOVA) for feature selection and a Support Vector Machine (SVM) algorithm for intrusion detection. The aim is to enhance detection accuracy while reducing computational overhead. ANOVA was used to identify significant features from vast and complex network traffic data, simplifying the high dimensional data and improving the detection system’s efficiency. The selected features are then classified using the Radial Basis Function (RBF) SVM algorithm, renowned for its high accuracy and robustness in handling high-dimensional data. A comparative analysis with existing IDS models demonstrates the improved efficiency and accuracy of the proposed model. This work provides an advanced methodology for cyber security, contributing to the ever-evolving battle against cyber threats. Keywords: Intrusion detection; Machine learning; Feature selection; Support vector machine; ANOVA.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng