Browsing by Author "Raphael Gboyega Adeyemo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemMicrostructure and mechanical properties of Al0.44Si0.32Ni0.09Fe0.05V0.05 alloy containing nanosilica for vehicle bonnet applications(Elsevier, 2025-01-25) Sefiu Adekunle Bello; Maruf Yinka Kolawole; Raphael Gboyega Adeyemo; Funsho Olaitan Kolawole; Uthman Ayomide Aliu; Ayodeji Aboyeji; Ahmed Rafiu; Abdul Ganiyu Funsho Alabi; Oyetunji AkinlabiStringent conditions of service that demand improved properties spurs continuous research on expired products to emerge new materials for engineering applications. An alloy was developed from aluminium scraps, ferrosilicon, and nickel alloy. The developed alloy was modified by nanosilica and the produced materials were examined. Result displays silica having an average size of 63.76 nm. In addition, new phases were detected in the alloys due to nanosilica additions and heat treatment. Moreover, the threadlike grain boundary phases of the control alloy changed to rounded tiny particles after the heat treatment. Silica addition to the alloy caused refinements of grains leading to numerous grain boundaries while the grain boundary phases of the heat treated nanosilica modified alloy appear in form of a modulated featherlike structure. An improvement in tensile strength was noted up to 10 wt% of nanosilica additions. Reduction in the impact energy prevails above 6 wt% of nanosilica addition. Heat treatment enhanced tensile properties and impact energies but reduced the hardness values of the developed alloys. Moreso, linear response surface models are significant in predicting the tensile strengths of the developed alloys. Model diagnostics like outlier and Cook’s distance confirm no error in the models. Comparation of properties affirms that tensile strength, tensile strain, and impact energy of the heat treated Al0.44Si0.32Ni0.09Fe0.05V0.05 alloy containing 10 wt% of nanosilica are greater than those of the LEXUS LX570 (2018 model), TOYOTA HILUX (2017 model), and TOYOTA CAMRY (2018 model). Hence, it is a strong, ductile, tough, and less hard material for the bonnet applications.
- ItemSustainable hybrid nanoparticle reinforced low‑density polyethylene: emerging materials for engineering applications(Springer, 2024-05-15) Sefiu Adekunle Bello; Mohammed Kayode Adebayo; Raphael Gboyega Adeyemo; Patricia Abimbola PopoolaNanoparticles are materials that have diameter/dimension between 1 and 100 nm. The term also covers materials as high as 500 nm in diameter or length. Their emergence has given birth to a new set of nanocomposites with more promising properties than the conventional composites. Moreover, polyethylene products generate wastes. Their managements can create wealth and reduce dependence on the virgin polyethylene for green material productions. In this study, Delonix regia pod and eggshell hybrid nanoparticles, up to 12% (by wt), were incorporated into the low-density polyethylene. Properties of the developed hybrid nanocomposites were investigated and compared with those of the existing automobile dashboard cover material properties in literature. Results obtained from mechanical examinations show 332.77, 179.19, 807.32, 63.61, 4.33, 26.61 and 21.35% increases in tensile strength, percentage elongation, tensile modulus, flexural strength, flexural deflection, flexural energy absorbed and hardness, respectively; with consequent reductions in the flexural modulus and impact energy by respective 4.67 and 4.40% at 4% Delonix regia pod, 6% eggshell particles addition to the virgin low density polyethylene. Maximum impact energy of 25.09 J equal to 16.48% increase was noticed at 4% Delonix regia pod 4% eggshell particle addition to the recycled low-density polyethylene. Virgin low-density polyethylene containing 4% Delonix regia pod, 6% eggshell particles having greater tensile strength and impact energy than each of the existing materials for the automobile dashboard cover is confirmed suitable for both upper and lower layers of the dashboard cover. Hence, 4% Delonix regia pod 6% eggshell particles reinforced virgin low-density polyethylene has 28.39 ± 1.42 Nmm−2 tensile strength; 1137.42 ± 15 Nmm−2 tensile modulus; 6.24 ± 0.68% tensile elongation; 21.86 ± 0.9 J impact energy; 69.17 ± 3.51 VHN hardness value; 28.11 ± 0.84 Nmm−2 flexural strength; 7.42 ± 0.8 flexural deformation; 314.41 ± 20.53 Nmm−2 flexural modulus and 0.30 J flexural energy.
- ItemWear resistance properties of particles‑reinforced epoxy nanocomposites using historical data response surface models(Springer, 2023-08-30) Sefiu Adekunle Bello; Raphael Gboyega Adeyemo; Abdul Ganiyu Funsho Alabi; Maruf Yinka Kolawole; Sadam Oniwa; Azim Bayonle Kareem; Muizz Oyeleye Azeez; Bunmi Bisola Olaiya; Tosin Adewale Salami; Sofiu Oladimeji Abdulkareem; Quamdeen Aremu Lawal; Kabir Omoniyi Mohammad; Peter Akinola Akindahunsi; Johnson Olumuyiwa Agunsoye; Suleiman Bolaji HassanKnowledge of wear resistance properties of newly emerging materials as complements to their mechanical properties is important to broaden their applications. This study focuses on wear resistance properties of particle-reinforced epoxy. Results obtained reveal that surface wear of the examined epoxy-based composites occurred by the crack initiation by the abrasive tips of the wear tester, crack propagation and/ or crack pinning. Linear regression model has accuracies of 99.94, 99.92, 99.93, 99.88, 99.91 and 99.92% with respect to various grades of composites examined. Response surface two-functional interaction model exhibits a better goodness of fit than the response surface linear model that shows an outlier. The response surface linear model best fits the wear rates of AlnpUCSnp/epoxy and AlnpCCSnp/epoxy with respective adequate precision of 14.138 and 10.204 affirming the model’s adequate signal. Hence, this study establishes that epoxy-based hybrid composite having 4.7%–82.47 nm-sized aluminium-5.76%–49.85 nm-sized carbonised coconut shell hybrid particles experiences a surface wear of 0.00272721 g per metre when it is in contact with a rough surface under an applied load of 16.71 N at a speed of 0.7 ms−1.