Browsing by Author "Olarinke V. Adeniyi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffects of dietary Euphorbia heterophylla extract on the growth performance, physiological, antioxidative and immune responses of Clarias gariepinus juveniles(Wiley, 2023) Olarinke V. Adeniyi; Ibrahim Adeshina; Seyramsarah B. Setufe; Theophilus Jarikre; Shehu M. Albarka; Fauziyat AttahiruEffects of dietary Euphorbia heterophylla extract (EH) on growth performance, feed utilization and haemato‐biochemical parameters in African catfish, Clarias gariepinus, juveniles were evaluated in this study. Diets fortified with EH at 0 (control), 0.5, 1.0,1.5 or 2.0 g/kg were fed to the fish to apparent satiation for 84 days before challenging it with Aeromonas hydrophila. The weight gain, specific growth rate and protein efficiency ratio of fish fed EH‐supplemented diets were significantly higher but lower feed conversion ratio (p < 0.05) than the control group. The villi height and width at the proximal, mid and the distal of the guts rose significantly with the increasing levels of EH from 0.5 to 1.5 g than the fish fed basal diet. Dietary EH enhanced (p < 0.05) the packed cell volume and haemoglobin, whereas 1.5 g EH boosted white blood cell, in relation to their counterpart in the control group. There were significant increase in the activities of glutathione‐S‐transferase, glutathione peroxidase and superoxide dismutase (p < 0.05) in the fish that were fed diets supplemented with EH than the control. Dietary EH also enhanced phagocytic activities, lysozyme activities and relative survival (RS) of C. gariepinus than the control group, with the highest RS obtained in fish that were fed diet containing EH at 1.5 g/kg level. These results revealed that the fish fed 1.5 g/kg dietary EH promoted growth performance, antioxidant and immune profiles, as well as protection against A. hydrophila infection.
- ItemInteractive effects of dietary phosphorus and microbial phytase on growth performance, intestinal morphometry, and welfare of Nile tilapia (Oreochromis niloticus) fed on low-fishmeal diets(Elsevier, 2023) Ibrahim Adeshina; Benjamin U. Akpoilih; Blessing F. Udom; Olarinke V. Adeniyi; Mohsen Abdel-TawwabOne of the industries with the fastest growth rates in the world is aquaculture. However, as fish meal (FM), the most expensive component of aquafeeds, is increasingly replaced with plant protein, the amount of phosphorus (P) in fish diets decreases as a result of plant proteins' high phytate content, which chelates P. Inorganic P is a dietary supplement that increases fish development and feed utilization, but its high inclusion in aquafeeds causes eutrophication due to environmental contamination. Consuming dietary phytase can make more P available, which lowers the amount of inorganic P in fish diets. The present study assessed the effects of replacing inorganic P in Nile tilapia (O. niloticus) diets with a hybrid microbial phytase (HMPhyt) derived from bacteria hybrid (Buttiauxella gaviniae, Yersinia mollaretti, and Hafnia sp.) on growth and welfare. Fish (1.50 ± 0.16 g) were divided into 18,100-L tanks with 20 fish each, and they were fed one of six low FM diets that were both isonitrogenous (300 g/kg) and isocalorific (17 kJ/g). The control diet had no P or HMPhyt supplements (0P + 0HMPhyt), the second diet contained 0.2 g/kg (1000FTU/kg) HMPhyt only (0P + HMPhyt), the third diet contained 100% P (13.0 g/kg) only (100P + 0HMPhyt), and the fourth to the six diets contained 75% (9.8 g/kg) P (75P + HMPhyt), 50% (6.5 g/kg) P (50P + HMPhyt), or 25% (3.3 g/kg) P (25P + HMPhyt). Fish were fed the experimental diets three times each day for 56 days, until they appeared satisfied. In comparison to the control diet (0P + HMPhyt), the results reveal that dietary phytase and/or inorganic P significantly increased Nile tilapia growth indices and feed intake (P < 0.05) than the control group. In contrast, there were no differences in the feed conversion ratio or the percentage of fish that survived among the various fish groups (P > 0.05). In addition, fish fed on P and/or HMPhyt containing diets had significantly greater counts of red and white blood cells, packed cell volume, and hemoglobin, as well as higher intestinal villi width/height, and absorption area compared to the control group. In contrast, higher levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and malondialdehyde were found in fish fed the control diet (0P + HMPhyt), while higher levels of superoxide dismutase, catalase, lysozyme, and respiratory burst activity were found in fish fed the inorganic P and/or HMPhyt based diets As a result, dietary HMPhyt (1000 FTU/kg) can totally substitute inorganic P in Nile tilapia diets without having any negative impacts on the fish's welfare or growth.