Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Olafusi, Oladipupo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evaluation of splitting tensile and compressive strength relationship of self-compacting concrete
    (Elsevier, 2019) Akinpelu, Mutiu; Odeyemi, Samson; Muhammed, Fatimah; Olafusi, Oladipupo
    Research findings have reported a behavioural relationship between the splitting tensile strength and compressive strength of concretes. This work studied both the experimental and analytical relationships that exist between splitting tensile strength and compressive strength of both vibrated concrete (VC) and self compacting concrete (SCC) of similar grades. Both concrete types were designed to achieve target compressive strength of 20 N/mm2, 30 N/mm2 and 40 N/mm2 at 28 days. The compressive and splitting tensile properties were measured on cylindrical concrete specimens of 150 mm diameter × 300 mm length at 28-days using a compression testing machine. The analytical work tested seven different reported models relating the two measured parameters for VC on SCC, while the Welch 2 sample t-test statistical technique was adopted to check the normality and equality of variance of the results. Experimental findings revealed that the ratio of the splitting tensile to compressive strengths for VC and SCC decreases with increasing compressive strength, and the analytical study revealed that similar analytical model could be adopted for both concrete types as there is no statistically detectable difference between their results.
  • Loading...
    Thumbnail Image
    Item
    Investigation of the Properties of “Pure Water” Sachet Modified Bitumen
    (2013) Dahunsi, Bamidele; Awogboro, Femi; Akinpelu, Mutiu; Olafusi, Oladipupo
    The increasing volume of traffic loads on our roads is currently a challenge on flexible pavement design and construction. Factors such as durability, strength and economic needs have to be considered in the design and construction of road pavement. Many research have been conducted to explore supplementary material that can make a durable asphalt pavement. It is not unfamiliar that the modification of bitumen with the use of polymers enhances its performance characteristics but at the same time significantly alters its rheologicalproperties. One of the environmental issues in most regions of Nigeria is the large number of polymeric wastes made from polyethylene water sachet (PWS) popularly called “Pure Water” Nylon deposited in domestic wastes and landfills. This study was conducted to investigate the effect of PWS on the properties of conventional bitumen and suitability of discarded PWS as bitumen modifier and to reduce the environmental effects of PWS disposal. Bituminous blends containing PWS at various percentages 2.5%, 5%, 7.5%, 10%, 12.5% and 15% weight of conventional bitumen. Penetration, softening point and float tests were carried out on the samples to evaluate the penetration index, viscosity, stiffness modulus and the suitability of PWS as bitumen modifier. Sieve analysis and infrared spectroscopy of the shredded PWS sample were also carried out. Result obtained from tests was compared between control sample (0% PWS) and PWS modified samples. The test results show that PWSs influence more on the penetration of the modified sample with the increase in the viscosity of the bitumen as can be observed by the decrease in the value of penetration with the increase in concentration of PWS. The penetration index values of Samples 2.5% PWS and 7.5% PWS makes them to be classified as blown bitumen and the PI value of Sample 5% PWS makes it less susceptible to temperature changes and can be classified as oxidized bitumen. PWS is a cheap and readily available material in construction when used appropriately in bitumen and the recycling of PWS for asphalt base roads helps alleviate an environmental problem and saves energy.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng