Browsing by Author "Mohammed Gana Yisa"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- ItemCONCEPTUAL DESIGN AND SIMULATION OF AFRICAN OIL BEAN SEED DEHULLER(Arid Zone Journal of Engineering, Technology and Environment, Faculty of Engineering University of Maiduguri, Nigeria, 2018) Adeshina Fadeyibi; Mohammed Gana Yisa; Olawale S. OladejiDehulling is a unit operation preceding oil extraction of most agricultural products. While it is common to dehull the African oil bean seed manually, the mechanical operation of the process has not been reported. Thus, this study was undertaken to design and simulate African oil bean seed dehulling machine. The design was based on previous investigation of the physical and mechanical properties of the seed at 15 % moisture content (db), including average breaking force of the seed (1.12 kN). Computational fluid dynamic method was used to carry out machine simulation and the effect of time of machine operation on motor torque; angular velocity and linear displacement were investigated. The design results show that a 3 HP, single phase electric motor was required to power 25 mm shaft diameter of the machine. The simulation results show that the angular velocity was high as soon as the machine commences operation, but this progressively decreases with an increase in the time of operation. The reason for this may be due to a decrease in the viscous effect of the internal wall which causes the air stream flow to slow down with a resultant drop in the relative angular velocity to the surface. This implies that the machine is practicable with performance likely to decrease with time of machine operation.
- ItemDesign, Fabrication and Testing of a Manually Operated Locust Bean Cubing Machine(Asian Journal of Applied Sciences, 2018) Mohammed Gana Yisa; Adeshina Fadeyibi; Salman AbdulHafeezBackground and Objective: Cubing is a process of consolidating bulk agricultural products to allow precise sizing prior to packaging and marketing. This research was undertaken to develop a locust bean cubing machine. Materials and Methods: The machine was designed to cube 2 kg of fermented locust beans with the help of a piston-connecting rod arrangement, as a conveying mechanism. A handle attached to the connecting rod provides the drive and force required for cubing and the resultant piston speed was computed empirically. Results: The results showed that the machine required a piston speed and pressure of 33 m secG1 and 25.1 kN mG2, respectively. Also, the machine was able to produce cubed locust beans of an approximate size of 0.06 m2. Conclusion: Thus, the cubing of locust beans condiment can be successfully achieved with the help of this machine.
- ItemDesign, Fabrication and Testing of a Manually Operated Locust Bean Cubing Machine(2018) Mohammed Gana Yisa; Adeshina Fadeyibi; Salman Abdul HafeBackground and Objective: Cubing is a process of consolidating bulk agricultural products to allow precise sizing prior to packaging and marketing. This research was undertaken to develop a locust bean cubing machine. Materials and Methods: The machine was designed to cube 2 kg of fermented locust beans with the help of a piston-connecting rod arrangement, as a conveying mechanism. A handle attached to the connecting rod provides the drive and force required for cubing and the resultant piston speed was computed empirically. Results: The results showed that the machine required a piston speed and pressure of 33 m secG1 and 25.1 kN mG2, respectively. Also, the machine was able to produce cubed locust beans of an approximate size of 0.06 m2. Conclusion: Thus, the cubing of locust beans condiment can be successfully achieved with the help of this machine.
- ItemDevelopment and evaluation of biomass-based alternative charcoal(Italian Society of Agricultural Engineering, 2020) Adeshina Fadeyibi; Kehinde Raheef Adebayo; Taiye Mayowa Obafemi; Abiodun Samson Olubo; Rasheed Amao Busari; Mohammed Gana YisaEnvironmental issues resulting from production and application of wood charcoal can be addressed by using biomass briquettes as alternative. This research was undertaken to develop and evaluate briquette from jatropha, groundnut and melon seed residues. Samples of the briquette were formed from mixtures of 0.32-0.39 kg carbonised residues, 0.30-0.40 kg starch and 0.02- 0.04 kg water. Physical and mechanical properties of the briquette samples including calorific value, bulk density and breaking force were determined using standard methods. Box-Bekhen Design Methodology was used to determine the optimum briquette blend. The results showed that the optimal briquette blend gave values of 4711.87 kcal.kg–1 calorific value, 282.59 kg m–3 bulk density and 1.36 kN breaking force, with a desirability index of 61.5%. A comparative analysis of the properties of the optimal briquette with that of a wood charcoal indicates no significant difference (P<0.05). This implies that the briquette can serve as an alternative energy source for cooking in rural communities.
- ItemEffects of period and temperature on quality and shelf-life of cucumber and garden-eggs packaged using cassava starch-zinc nanocomposite film(Journal of Applied Packaging Research, 2020) Adeshina Fadeyibi; Zinash Delebo Osunde; Mohammed Gana YisaNanocomposite film can be used to prolong the shelf-life of fruits and vegetables. This research was undertaken to investigate the effects of packaging period and temperature on the quality and self-lives of cucumber and garden-eggs packaged using cassava starch-zinc nanocomposite film. Hundred grams each of cucumber and garden-eggs were wrapped in a 200× 350 mm size nanocomposite film and low density polyethylene (LDPE) of 2.240± 1.076 × 10-10 gm-1Pa-1s-1 water vapor and 1.568± 0.084× 10-10gm-1Pa-1s-1 oxygen gas permeability. The products were stored at 10−27oC temperatures and 0−9 day periods, and their quality attributes including β-carotene and ascorbic acid were determined. The results showed a high positive correlation for β-carotene and ascorbic acid contents of the cucumber and the garden eggs packaged in the nanocomposite film and the LDPE (p< 0.05). Also, the percentage increase in shelf-life of the packaged products in the cassava starch-zinc nanocomposite films was higher than those packaged in the LDPE materials. This indicates a small quality loss in the products packaged using the nanocomposite film compared with that packaged using the conventional LDPE. Hence, cassava starch-zinc nanocomposite film can be used to extend the shelf-life of the products.
- ItemFinite element simulation of temperature variation in grain metal silo(Research in Agricultural Engineering, 2018) Mohammed Gana Yisa; Adeshina Fadeyibi; O.I.O. Adisa; Kehinde Peter AlabiThis research was conducted to study temperature variation in grain metal silo using Finite Element Method (FEM). A mathematical model was developed, based on conductive heat transfer expressed in Poisson and Laplace Differential models, by discretising the actual temperature variation at 8 hours storage interval for 153 days (May to September). The temperature variations were measured from specified radii (0, 3.25 m and 8.25 m) and at depth of 1.2 m from the base of the grain silo. The results of the simulation were compared with the ambient and measured values, and this agreed with each other. The pattern of temperature at the depth of 1.2 m from the radii of the metal silo did not differ from each other. This may imply that the silo will need aeration at an interval of 8 hours to curtail excessive heat build-up that may lead to deterioration of stored grains and possible structural failure.
- ItemInvestigation into properties of starch-based nanocomposite materials for fruits and vegetables packaging- A review(FUTAJEET, Faculty of Engineering and Engineering Technology, Federal University of Technology, Akure, 2017) Adeshina Fadeyibi; Zinash Delebo Osunde; Mohammed Gana Yisa; Abiodun OkunolaThe huge environmental impact associated with the use of conventional packaging materials, like polyethylene, has led to the renewed interest in alternative ways of food packaging. Recently, green polymer technology, which involves the application of renewable packaging materials made from biodegradable resources like starch, has been the subject of discussion among stakeholders in food processing and storage. This review was carried out to investigate the mechanical, thermal, barrier and structural properties of biodegradable nanocomposite packaging materials made from starch. Emphasis was given to the application of the starch-based biodegradable packaging materials in fruits and vegetables packaging. The prospect of the new materials in terms of strength, barrier to moisture and oxygen, morphology and thermal stability, with regard to the inclusion of nanoparticles, for this application was highlighted. The information provided will help address the environmental challenges often posed by the conventional materials while at the same time improve the post harvest storage stability of fruits and vegetables through packaging.
- ItemMODIFICATION AND EVALUATION OF AN ELECTRIC DRYER FOR HIGH MOISTURE VEGETABLES(Engineering Science, 2018) Mohammed Gana Yisa; Adeshina FadeyibiFood wastage resulting from lack of facilities for drying and the unhygienic methods of processing are major causes of food shortage in supply chain. Thus, to address these issues, an existing electric dryer was modified for drying high moisture vegetables. The machine was evaluated for drying tomatoes with an initial moisture content of 63% (wb). A heating element was attached below the fan of the dryer to allow a through air circulation instead of the cross air flow pattern of the previous design. Four trays, with each having a capacity of 0.092m 3 , were loaded with 30.4kg of slice tomatoes at a rate of 7.6kg per tray and dried for 5h. Thermostat was used to regulate temperature and relative humidity in the drying compartment at 42 o C and 11% RH. Control experiment was set up to determine the quality loss upon drying under sun for 5 h. Nutritional quality parameters of the dried products were determined using standard known methods. The results showed that actual volume of heated air delivered to the drying chambers, thickness of polyurethane used as lagging and power requirement for heating were 8.96m 3 , 38mm and 3000W, respectively. The nutritional quality loss in the sun dried samples was lower than the corresponding loss in the dryer. The modified dryer has 73% drying efficiency, which higher than the efficiency of the existing dryer.
- ItemOPTIMIZATION OF OPERATION PARAMETERS OF A DEVELOPED DOUGH MIXER(LAUTECH Journal of Engineering and Technology, 2021) Adeshina Fadeyibi; Samuel Jacob Aina; Rasheed Amao Busari; Mohammed Gana YisaA mixer is essentially required for homogenizing flour and other ingredients in the bakery industry. In this research, a dough mixer was developed using a 10.5% chromium stainless-steel and its performance evaluated based on the machine parameters. The shaft speed (250−350 rpm), agitator geometry angle (45o, 60o and 90o) and number of blades (type A-5, type B-4 and type C-3) were considered as the machine parameters. The Effective mix proportion (EMP) was determined as the performance index. A Split-Plot Optimal Design was used to determine the desired variables for maximum EMP. Results show that the EMP decreases with an increase in the agitator geometry angle, irrespective of the speed of the mixing shaft. A critical behavior of the mixer was obtained at 300rpm, which indicates the homogeneous phase change stage in the mixing process. Again, the mixer performance was higher for the agitator with 5 blades and lower for the 3 blades agitator. The optimum EMP occurred for type C-3 blades, 60o geometry angle at 250 rpm with 98% desirability. These can be considered as the best configurations for a large-scale practice.
- ItemOptimization of Processing Parameters of Nanocomposite Film for Fresh Sliced Okra Packaging(Journal of Applied Packaging Research, 2019) Adeshina Fadeyibi; Zinash Delebo Osunde; Mohammed Gana YisaNanocomposite film can be regarded as an active packaging material which is capable of curtailing microbial growth and keeping food for an extended life. In this research, the optimum processing parameters of cassava starch-zinc nanocomposite film was determined for packaging fresh-sliced okra. Samples of the films, with thickness ranging between 15– 17µm, were developed from the blends of 24g of cassava starch, 0–2 % zinc nanoparticles (NP) and 45–55 % glycerol in 600 ml distilled water. The ideal film was determined by optimizing the film processing parameters using Box-Behnken Design in Surface Response Methodology. It was subsequently used to package fresh-sliced okra at 10– 27oC temperature and 3– 9 days storage period; and compared with a low density polyethylene film (LDPE, 10 µm). The results showed that the 17µm thick film, whose desirability function is closer to the optimal goal, gave values of 7.4 × 104 CFU/g, 21.62 mg/ 100g, 0.44 mg/l and 10.46 IU for bacteria count, ascorbic acid, titratable acidity and β-carotene contents, respectively. Also, there was a progressive decrease in the quality of the packaged products with an increase in the temperature and the storage period (poC was not significant. Thus, the nanocomposite film can essentially be used for the packaging of fresh-sliced okra.
- ItemPerformance Evaluation and Modification of an Existing Rice Destoner(International Journal of Engineering and Technology, 2017) Mohammed Gana Yisa; Adeshina Fadeyibi; Kamil Kayode Katibi; O. C. UcheomaDestoning is a processing technique for removing stones and broken grains from a batch of milled rice. This research was carried out to modify an existing rice destoner for the purpose of increasing its capacity and efficiency. Modification introduced addressed challenges associated with the existing machine, such as low stone removal efficiency and low air flow channel, which affects the aerodynamic lifting of the rice grains. Performance was evaluated for 3 kg of locally milled rice samples based on the design capacity of the machine, cleaning efficiency and degree of grain flow. The result showed that the design capacity (1.8 kg/h) of the modified destoner was higher than that of the existing (0.86 kg/h). Also, the modified machine has 40.8% destoning efficiency which is higher than that of existing machine (2.58%).
- ItemPrediction of Some Physical Attributes of Cassava Starch–Zinc Nanocomposite Film for Food‑Packaging Applications(Journal of Packaging Technology and Research, Springer Nature, 2018) Adeshina Fadeyibi; Zinash Delebo Osunde; Mohammed Gana YisaCharacterization of nanocomposite film requires a high level of instrumentation and accuracy in measurements. It is normally arduous to achieve correct measurement of a system under different conditions using the same instrument without allowing for errors. For this reason, model representation of a system is usually encouraged. In this research, empirical model equations were developed for predicting some physical attributes of cassava starch–zinc nanocomposite film for food-packaging applications. Samples of the films, with thickness ranging between 15 and 17 μm, were developed by blending 24 g of cassava starch, 0–2% zinc nanoparticles, and 45–55% glycerol. The permeability of the films, which helps in maintaining the quality of packaged food, was determined due to oxygen and water vapour at a temperature of 27 °C and 65% RH. Elastic modulus and hardness were determined using nano-indentation techniques. Empirical model equations were developed using Box–Behnken design from 60% of the total data and the remainder were predicted. Results showed that the models developed are fit, and there were no significant differences between the 40% remaining data and model predicted data (<0.05). The contributions of the model terms to the validity of the equations were generally high with mean square error (MSE) < 10%. The result indicates that the models can be suitable for predicting permeability, hardness, and elastic modulus of cassava starch-zinc nanocomposite film.