Browsing by Author "Mary Fadeyibi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAPPLICATION OF MAIZE STARCH-PEANUT SHELL NANOCOMPOSITE PACKAGING ON MUSHROOM UNDER VARYING MOISTURE, THICKNESS, AND COLD STORAGE(Journal of Microbiology, Biotechnology and Food Science, 2023) Adeshina Fadeyibi; Kehinde Peter Alabi; Mary Fadeyibi; Taiwo Olusola AsaniyiIn this research, a maize starch-peanut shell nanocomposite film was applied to package mushroom under varying moisture, thickness, and cold temperature conditions. The film was developed by congealing 18 g starch, 0.38 g peanut nanoparticles, 16 g glycerol in 300 ml distilled water at 70oC, and its thermal, mechanical, barrier and microstructural behaviors were determined using standard methods. The film was applied to package oyster mushroom by varying the thickness (5– 10 mm) and moisture content (77.18 –91.14 %, wb) of the product, and thereafter storing it under 4– 8 oC cold temperature condition. The results revealed ~ 5% weight fraction degradation at ≤ 310 oC with endothermic peaks occurring at 250 oC and 400 oC, which corresponds to phase transition points where the film was thermally stable. The deformation pattern of the film at atomic level mimics a natural plastic material, with a heterogeneous particle size distribution across the film matrix. The permeability coefficients were 0.68× 10-10, 2.10× 10-10 and 14.0× 10-10 cm3 (STP) cm/cm2scm Hg for nitrogen, oxygen, and carbon-dioxide, gases, respectively. Also, the microbial load of the packaged product significantly decreased with an increase pH, moisture, and temperature (p< 0.05). Thus, the film can be suitable for mushroom packaging.
- ItemAPPLICATION OF MAIZE STARCH-PEANUT SHELL NANOCOMPOSITE PACKAGING ON MUSHROOM UNDER VARYING MOISTURE, THICKNESS, AND COLD STORAGE(2023) Adeshina Fadeyibi; Kehinde Peter Alabi; Mary Fadeyibi; Taiwo Olusola AsaniyiIn this research, a maize starch-peanut shell nanocomposite film was applied to package mushroom under varying moisture, thickness, and cold temperature conditions. The film was developed by congealing 18 g starch, 0.38 g peanut nanoparticles, 16 g glycerol in 300 ml distilled water at 70oC, and its thermal, mechanical, barrier and microstructural behaviors were determined using standard methods. The film was applied to package oyster mushroom by varying the thickness (5– 10 mm) and moisture content (77.18 –91.14 %, wb) of the product, and thereafter storing it under 4– 8 oC cold temperature condition. The results revealed ~ 5% weight fraction degradation at ≤ 310 oC with endothermic peaks occurring at 250 oC and 400 oC, which corresponds to phase transition points where the film was thermally stable. The deformation pattern of the film at atomic level mimics a natural plastic material, with a heterogeneous particle size distribution across the film matrix. The permeability coefficients were 0.68× 10-10, 2.10× 10-10 and 14.0× 10-10 cm3 (STP) cm/cm2scm Hg for nitrogen, oxygen, and carbon-dioxide, gases, respectively. Also, the microbial load of the packaged product significantly decreased with an increase pH, moisture, and temperature (p< 0.05). Thus, the film can be suitable for mushroom packaging.
- ItemSynthesis, characterization, and suitability of cocoyam starch-banana peels nanocomposite film for locust beans packaging(Bulletin of the National Research Centre, Springer Nature, 2022) Adeshina Fadeyibi; Kehinde Peter Alabi; Mary Fadeyibi; Adewale Oluwaseun AdewaraPackaging of locust beans is done to prevent deterioration and promote its shelf-life. This research was carried out to develop and evaluate a cocoyam starch-banana peels nanocomposite film for locust beans packaging. The film was prepared by gelatinizing a mixture of 0.36 g banana peels nanoparticles (~ 1.14–1.64 nm), 18 g cocoyam starch, and 18 ml glycerol in 300 ml distilled water at 90 °C. The thermal, structural, mechanical and barrier properties of the film were determined using standard procedures. A 100 g of the locust beans condiment was packaged using the film and compared with packaging in a low-density polyethylene (LDPE) at 5.16–7.58 pH and 16.67–11.50% moisture ranges. Results Results indicate approx. 3% weight loss with an increase in temperature (≤ 250 °C). The heat of decomposition in the process was 4.64 J/g, which depended on the transition temperature. Also, the film has high stiffness and creep along the line of topography in the atomic force imaging. The material permeates more to CO 2 (27%) and H 2 (67%) but has a low O 2 (4%) and N 2 (1%) gas permeabilities. The size of particles in the film was in the range of 3.52–3.92 nm, which is distributed across its matrix to create the pores needed to balance the gases in the micro-atmosphere. The microbial load of the locust beans decreased with pH and increased with moisture, but this was generally lower compared to those packaged in the LDPE at p < 0.05. Conclusions The film was a better packaging material than the LDPE since it recorded lower counts of the microbes throughout the storage. Thus, the nanocomposite film was effective in controlling the microbial growth of the locust beans irrespective of the sample moisture and pH over the 30 days packaging duration.