Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ibitoye S. E."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CFD Analysis of a 3-bladed NACA 0018 Vertical Axis Wind Turbine for Deployment in Ilorin, Kwara State, Nigeria.
    (FETiCON, 2023-06-05) Olayemi O. A.; Ajide T. F.; Obalalu A. M.; Ibitoye S. E.; Jinadu Abdulbaqi; Anyaegbun B. E.
    The aerospace industry has prioritized reducing fatalities and failure rates after the launch of a vehicle resulting from system or engine failure. Rocketry has been difficult over the years, and international players in the industry are constantly attempting to learn from any failures. This paper aims to decrease material, resource, and payload waste while ensuring crew safety by focusing on the computational modelling and aerodynamic analysis of a single-stage launch vehicle. CATIA V5 was utilized to create the computational model of a triggered nose cone rocket booster while ANSYS was used to analyse the trigger nose cone at different angles of attack and determine how the trigger nose cone will behave in case of emergencies such as system or engine failure, which could lead to the complete explosion of the launch vehicle. Based on the current findings, the trigger nose cone is not in the safe zone when ejected at an angle of attack greater than 20° due to the shockwave's effect on its surface when ejected from the main body of the launch vehicle.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng