Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ibitoye B. A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Numerical Verification of Strut and Tie Models and Failure Modes of Reinforced Self-Compacting Concrete Deep Beams
    (Trans Tech Publications Ltd, Switzerland. Indexing, 2021) Akinpelu M. A.; Ibitoye B. A.; Odeyemi S. O.; Olorede K. O.
    This study utilized Finite Element Method (FEM) to analyse the structural behaviour and failure modes of Reinforced Self Compacting Concrete (RSCC) deep beams. Eighteen deep beam specimens subjected to four-point loadings were modelled and analyzed using Abaqus modelling tool. Damage plasticity model was used to characterised the nonlinear behaviour of concrete material while linear elastic, linear-plastic-hardening model represented the reinforcing steel material behaviour. The results of the finite model were compared with four different Strut and Tie Models (STMs) using one-way Analysis of Variance (ANOVA). Results of the numerical study revealed that the concrete strength and shear span to depth ratio mostly affect the load-deflection response of the beams. Also, the failure modes of the studied deep beams were influenced by shear span to depth ratio, concrete strength as well as web reinforcement distribution. The ANOVA results also showed that the FEM outperformed the existing STMs.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng