Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gatta N. F."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Multiclass Feature Selection and Classification with Support Vector Machine in Genomic Study
    (Professional Statisticians Society of Nigeria (PSSN), 2017) Banjoko A. W.; Yahya W. B.; Garba M. K.; Olaniran O. R.; Amusa L. B.; Gatta N. F.; Dauda K. A.; Olorede K. O.
    This study proposes an efficient Support Vector Machine (SVM) algorithm for feature selection and classification of multiclass response group in high dimensional (microarray) data. The Feature selection stage of the algorithm employed the F-statistic of the ANOVA–like testing scheme at some chosen family-wise-error-rate (FWER) to control for the detection of some false positive features. In a 10-fold cross validation, the hyper-parameters of the SVM were tuned to determine the appropriate kernel using one-versus-all approach. The entire simulated dataset was randomly partitioned into 95% training and 5% test sets with the SVM classifier built on the training sets while its prediction accuracy on the response class was assessed on the test sets over 1000 Monte-Carlo cross-validation (MCCV) runs. The classification results of the proposed classifier were assessed using the Misclassification Error Rates (MERs) and other performance indices. Results from the Monte-Carlo study showed that the proposed SVM classifier was quite efficient by yielding high prediction accuracy of the response groups with fewer differentially expressed features than when all the features were employed for classification. The performance of this new method on some published cancer data sets shall be examined vis-à-vis other state-of-the-earth machine learning methods in future works.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng