Browsing by Author "Fadeyibi A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDevelopment and Optimisation of Cassava Starch-Zinc-Nanocomposite Film for Potential Application in Food Packaging(Journal of Food Processing and Technology, 2016) Fadeyibi A; Osunde ZDThe improvement of biodegradable film used in the food packaging has been made possible through nanotechnology. This research was carried out to develop and optimize the cassava starch-zinc-nanocomposite films for potential applications in food packaging. The zinc nanoparticles were prepared by sol-gel method and established with the particle sizes ranging from 4 nm to 9 nm. The films were developed by casting the solutions of 24 g cassava starch, 0% to 2% (w/w) zinc nanoparticles and 45% to 55% (w/w) glycerol in plastic mould of 8, 10 and 12 mm depths. The average thickness of the films varied respectively with the depth as 15.14 ± 0.22, 16.21 ± 0.36 and 17.38 µm ± 0.13 µm. Permeability and stability of the films were determined at 27°C and 65% relative humidity and thermal range of 30°C to 950°C, respectively. Also, the mechanical properties were determined using the nano indentation technique. The films were optimised based on their characterized attributes using their desirability functions. The hardness, creep, elastic and plastic works, which determined the plasticity index of the films, decreased with thickness and zinc nanoparticles. The water vapour permeability increased with the concentrations of glycerol, zinc nanoparticles and thickness while the oxygen permeability decreased with the nanoparticles. The degradations of the Nanocomposites at 100°C were in the range of 2%-3%, which may indicate that the films are thermally stable. The optimum film whose desirability function is closer to the optimisation goal gave values of 49.29% glycerol, 17 µm thickness and 2% zinc nanoparticles for maximum thermal and mechanical properties. The low permeability, high thermal stability and low plastic work at higher concentration of zinc nancomposites may be essential in food packaging.
- ItemOPTIMIZATION OF OPERATION PARAMETERS OF A DEVELOPED DOUGH MIXER.(Published by Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria, 2020) Fadeyibi A; Aina S.J; Busari R.A; Alabi K.P; Yisa M.GA mixer is essentially required for homogenizing flour and other ingredients in the bakery industry. In this research, a dough mixer was developed using a 10.5% chromium stainless-steel and its performance evaluated based on the machine parameters. The shaft speed (250−350 rpm), agitator geometry angle (45o, 60o and 90o) and number of blades (type A-5, type B-4 and type C-3) were considered as the machine parameters. The Effective mix proportion (EMP) was determined as the performance index. A Split-Plot Optimal Design was used to determine the desired variables for maximum EMP. Results show that the EMP decreases with an increase in the agitator geometry angle, irrespective of the speed of the mixing shaft. A critical behavior of the mixer was obtained at 300rpm, which indicates the homogeneous phase change stage in the mixing process. Again, the mixer performance was higher for the agitator with 5 blades and lower for the 3 blades agitator. The optimum EMP occurred for type C-3 blades, 60o geometry angle at 250 rpm with 98% desirability. These can be considered as the best configurations for a large-scale practice.