Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Babatunde, R"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Classification of Customer Churn Prediction Model for Telecommunication Industry Using Analysis of Variance
    (Institute of Advanced Engineering and Science - International Journal of Artificial Intelligence, 12(3), 1323 – 1329, 2023) Babatunde, R; Abdulsalam, S.O.; Abdulsalam, O.A.; Arowolo, M.O.
    Customer predictive analytics has shown great potential for effective churn models. Thriving in today's telecommunications industry, discerning between consumers who are likely to migrate to a competitor is enormous. Having reliable predictive client behavior in the future is required. Machine learning algorithms are essential to predict customer turnovers, and researchers have proposed various techniques. Churn prediction is a problem due to the unequal dispersal of classes. Most traditional machine learning algorithms are ineffective in classifying data. Client cluster with a higher risk has been discovered. A support vector machine (SVM) is employed as the foundational learner, and a churn prediction model is constructed based on each analysis of variance (ANOVA). The separation of churn data revealed by experimental assessment is recommended for churn prediction analysis. Customer attrition is high, but an instantaneous support can ensure that customer needs are addressed and assess an employee's capacity to achieve customer satisfaction. This study uses an ANOVA with a SVM, classification in analyzing risks in telecom systems It may be determined that SVM provides the most accurate forecast of customer turnover (95%). The projected outcomes will allow other organizations to assess possible client turnover and collect customer feedback. Keywords: Analysis of variance ,Churn, Machine learning , Support vector machine, Telecommunication

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng