Browsing by Author "Adil Darvesh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHeat transfer analysis of thermal radiative over a stretching curved surface using molybdenum disulfide and silicon dioxide composite material under the influence of solar radiation(2024) Adebowale Martins Obalalu; Adil Darvesh; Lateefat Aselebe; Sulyman Olakunle Salawu; Kazeem IssaPurposeThe primary focus of this study is to tackle a critical industry issue concerning energy inefficiency. This is achieved through an investigation into enhancing heat transfer in solar radiation phenomena on a curved surface. The problem formulation of governing equations includes the combined effects of thermal relaxation, Newtonian heating, radiation mechanism, and Darcy-Forchheimer to enhance the uniqueness of the model. This research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology. A mixture of silicon dioxide (SiO_2)\ and Molybdenum disulfide (MoS_2) is considered for the nanoparticle’s thermal propagation in base solvent propylene glycol. The simulation of the modeled equations is solved using the Shifted Legendre collocation scheme (SLCS). The findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. Furthermore, the heat transmission progress increases against the curvature and thermal relaxation parameter.Design/methodology/approachShifted Legendre collocation scheme (SLCS) is utilized to solve the simulation of the modeled equations.FindingsThe findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. The heat transmission progress increase against the curvature and thermal relaxation parameter.Originality/valueThis research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology.
- ItemThermal management of radiation mechanism over a stretchable curved surface inside the circle: performance enhancement of molybdenum disulfide and silicon dioxide hybrid nanofluid for thermal technology advancement(2024) A. M. Obalalu; Adil Darvesh; L. O. Aselebe; S. O. Salawu; K. IssaThe main perspective of this research focuses on addressing the pressing industry problem related to energy inefficiency by studying the heat transfer improvement of solar radiative and heat absorption/emission phenomena over a stretchable curved sheet inside the circle. To increase the model novelty, the combined influence of thermal relaxation, Newtonian heating, radiation mechanism, and Darcy-Forchheimer are included in the problem formulation of governing equations. Furthermore, this research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilising the abovementioned phenomenon with the purpose of advancing thermal technology. In this perspective, Molybdenumdisulfide (MoS2) with a base fluid of Propylene glycol (C3H8O2) is utilised as nanoparticles for nanofluid (NFs), and for making hybrid nanofluid (HNFs), Molybdenum disulfide (MoS2) and silicon dioxide (SiO2)are utilised with of Propylene glycol (C3H8O2). The equations are converted into ordinary Differential equations using Similarity variables. Shifted Legendre collocation scheme (SLCS) is then utilised to solve the simulation of the modelled equations. The findings show that the solar radiation effects boosted the heating performance of the MoS2 − SiO2/ C3H8O2 hybrid nanofluid.