Browsing by Author "Adeshina Fadeyibi"
Now showing 1 - 20 of 44
Results Per Page
Sort Options
- ItemAdvances in utilization of carbon-dioxide for food preservation and storage(Elsevier, 2023) Adeshina FadeyibiUtilization of carbon-dioxide (CO2) in post-harvest value chain is a subject of interest among stakeholders in the food industry. In this paper, current and future applications of the CO2, including food storage, animal stunning, skin tanning, blasting dry ice, and controlled storage atmosphere (CSA) were reviewed. The technique applies to quality preservation during food drying and inactivation of enzymes, like polyphenol oxidase, and lipoxygenase, which are accountable for the loss of color and flavor in beverages. It also applies to plant and animal management, including inspection and control of facilities, cleaning of skin products, and protection of cereals and horticultural crops against attacks by insects, pests, and microbes. However, it may not be appropriate for food transportation and retail storage due to the use of sophisticated facilities. Thus, a simplified equipment was recommended to facilitate management of the storage system. Also, it was suggested to investigate the influence of the dry ice pretreatment on microstructural properties, vibration loadings and rheological stability of the stored foods as a way-forward for further studies. A high-pressure CO2 technique was proposed for treatment of fouling in facilities used for food preservation and storage.
- ItemAPPLICATION OF MAIZE STARCH-PEANUT SHELL NANOCOMPOSITE PACKAGING ON MUSHROOM UNDER VARYING MOISTURE, THICKNESS, AND COLD STORAGE(Journal of Microbiology, Biotechnology and Food Science, 2023) Adeshina Fadeyibi; Kehinde Peter Alabi; Mary Fadeyibi; Taiwo Olusola AsaniyiIn this research, a maize starch-peanut shell nanocomposite film was applied to package mushroom under varying moisture, thickness, and cold temperature conditions. The film was developed by congealing 18 g starch, 0.38 g peanut nanoparticles, 16 g glycerol in 300 ml distilled water at 70oC, and its thermal, mechanical, barrier and microstructural behaviors were determined using standard methods. The film was applied to package oyster mushroom by varying the thickness (5– 10 mm) and moisture content (77.18 –91.14 %, wb) of the product, and thereafter storing it under 4– 8 oC cold temperature condition. The results revealed ~ 5% weight fraction degradation at ≤ 310 oC with endothermic peaks occurring at 250 oC and 400 oC, which corresponds to phase transition points where the film was thermally stable. The deformation pattern of the film at atomic level mimics a natural plastic material, with a heterogeneous particle size distribution across the film matrix. The permeability coefficients were 0.68× 10-10, 2.10× 10-10 and 14.0× 10-10 cm3 (STP) cm/cm2scm Hg for nitrogen, oxygen, and carbon-dioxide, gases, respectively. Also, the microbial load of the packaged product significantly decreased with an increase pH, moisture, and temperature (p< 0.05). Thus, the film can be suitable for mushroom packaging.
- ItemAPPLICATION OF MAIZE STARCH-PEANUT SHELL NANOCOMPOSITE PACKAGING ON MUSHROOM UNDER VARYING MOISTURE, THICKNESS, AND COLD STORAGE(2023) Adeshina Fadeyibi; Kehinde Peter Alabi; Mary Fadeyibi; Taiwo Olusola AsaniyiIn this research, a maize starch-peanut shell nanocomposite film was applied to package mushroom under varying moisture, thickness, and cold temperature conditions. The film was developed by congealing 18 g starch, 0.38 g peanut nanoparticles, 16 g glycerol in 300 ml distilled water at 70oC, and its thermal, mechanical, barrier and microstructural behaviors were determined using standard methods. The film was applied to package oyster mushroom by varying the thickness (5– 10 mm) and moisture content (77.18 –91.14 %, wb) of the product, and thereafter storing it under 4– 8 oC cold temperature condition. The results revealed ~ 5% weight fraction degradation at ≤ 310 oC with endothermic peaks occurring at 250 oC and 400 oC, which corresponds to phase transition points where the film was thermally stable. The deformation pattern of the film at atomic level mimics a natural plastic material, with a heterogeneous particle size distribution across the film matrix. The permeability coefficients were 0.68× 10-10, 2.10× 10-10 and 14.0× 10-10 cm3 (STP) cm/cm2scm Hg for nitrogen, oxygen, and carbon-dioxide, gases, respectively. Also, the microbial load of the packaged product significantly decreased with an increase pH, moisture, and temperature (p< 0.05). Thus, the film can be suitable for mushroom packaging.
- ItemCharacterization of Cassava Starch-Zinc Nanocomposite Film for Food Packaging(Elsevier, 2022) Adeshina FadeyibiPerformance of a pure thermoplastic film can be enhanced by adding nanoparticles of the size ranging 1–100 nm for application in food packaging. This research was carried out to develop a nanocomposite by mechanically homogenizing different proportions of cassava starch (1000 g), glycerol (45–55%, w/w), and zinc nanocomposites (0–2%, w/w). A dispersed mixture of 24 g of these products was then mixed with distilled water (600 ml) and heated for 30 min at boiling temperature to form a thermoplastic solution. The film was formed in different sizes (15, 16, and 17 µm thickness) by casting the solution on a 350 mm ×180 mm plastic mold of different depths (8, 10, and 12 mm). The performance of the film, including barrier, thermal, and structural properties was determined using standard methods. The results showed that the oxygen and water vapor decreased with the thickness and increased with the concentration of the glycerol. Plastic d-spacing increased with an increase in thickness, and this might indicate the ability of the material to intercalate and exfoliate at some points during a prolonged packaging application. It might also indicate the short-range order of the material constituents in the film for a better service performance. A small degradation of the film was observed between 30 °C and 60 °C. This indicated that the film was thermally stable and might be suitable for packaging applications, especially in the tropical climes. The information of the characterized attributes and optimization of the cassava starch zinc-nanocomposite films justified their alternative application to pure thermoplastic and conventional films for food packaging.
- ItemCHARACTERIZATION OF CASTOR BIODIESEL BLENDED WITH CONVENTIONAL DIESEL FUELS.(Published by Nigerian Instituttion of Agricultural Engineers (NIAE), 2020) Rasheed Amao Busari; Joshua Olanrewaju Olaoye; Adeshina Fadeyibi; Timothy Denen Akpenpuun; Murtala Olayode Iyanda; Segun Emmanuel AdebayoCompression Ignition Engines have proved its usefulness in agriculture, transportation, and power sector. In this research, the physicochemical properties of different blends of castor biodiesel were compared with conventional diesel fuel. Samples of the castor biodiesel prepared using transesterification process were blended with the conventional biodiesel in different mixed ratios, namely B5, B10, B15, B20, B25,B50 to B100. The physicochemical properties, including density, flash point and kinematic viscosity were determined following standard and international procedures (ASTM). Results show that the B100 has higher density, kinematic viscosity and flash point compared to the conventional diesel at 280 °C. But the calorific value was lower in comparison. A gradual decrease in the density, flash point and kinetic viscosity were observed with a decrease in the biodiesel blends from B100 to B5. This implies that the castor biodiesel can be used as a close substitute for the conventional diesel fuel and has substantial advantages, especially in area of greenhouse control and energy security.
- ItemCONCEPTUAL DESIGN AND SIMULATION OF AFRICAN OIL BEAN SEED DEHULLER(Arid Zone Journal of Engineering, Technology and Environment, Faculty of Engineering University of Maiduguri, Nigeria, 2018) Adeshina Fadeyibi; Mohammed Gana Yisa; Olawale S. OladejiDehulling is a unit operation preceding oil extraction of most agricultural products. While it is common to dehull the African oil bean seed manually, the mechanical operation of the process has not been reported. Thus, this study was undertaken to design and simulate African oil bean seed dehulling machine. The design was based on previous investigation of the physical and mechanical properties of the seed at 15 % moisture content (db), including average breaking force of the seed (1.12 kN). Computational fluid dynamic method was used to carry out machine simulation and the effect of time of machine operation on motor torque; angular velocity and linear displacement were investigated. The design results show that a 3 HP, single phase electric motor was required to power 25 mm shaft diameter of the machine. The simulation results show that the angular velocity was high as soon as the machine commences operation, but this progressively decreases with an increase in the time of operation. The reason for this may be due to a decrease in the viscous effect of the internal wall which causes the air stream flow to slow down with a resultant drop in the relative angular velocity to the surface. This implies that the machine is practicable with performance likely to decrease with time of machine operation.
- ItemDesign and Performance Evaluation of a Multi-Tuber Peeling Machine(AgriEngineering, 2020) Adeshina Fadeyibi; Olusola Faith AjaoTuber peeling is an essential unit operation prior to further processing. In this research, a batch loading tuber-peeling machine, with a capacity of 10 kg/min, was designed, fabricated and tested for cocoyam, sweet potato, yam and cassava tubers. The machine was designed to operate at a speed range of 350–750 rpm and time range of 5–12 min based on the principle of surface scratching. The performance of the machine was determined with respect to the peeling efficiency, percent weight of peel and flesh loss. The results showed that the peeling efficiency increased with an increase in the shaft speed for all the tubers. Also, the flesh loss and percent weight of peel decreased with an increase in the shaft speed for cassava and cocoyam tubers but increased for sweet potato and yam tubers (p < 0.05). Effective peeling of the tubers was achieved for sweet potato and yam at all the shaft speeds and time ranges considered.
- ItemDesign of a Dual Operated Cassava Chipper(European Mechanical Science, 2017) Adeshina Fadeyibi; Prof. Mohammed Gana Yisa; Kehinde Peter AlabiSize reduction of agricultural products is an essential requirement for their processing and transportation.This research designed and fabricated a manually operated and motorised cassava chipping machine, whichis adaptable to the local farmers at the cottage level. The design was carried out by empirically computingthe threshold force required for cutting the cassava tubers, with a prior knowledge of the length (350 mm)and thickness (1.5 mm) of the cutting blades as influencing indexes. Also, the capacity of the machine wasevaluated using six different cutting forces above and below the cutting threshold force (68.99 N). The resultsshow that the cutting force increased exponentially with the length and diameter of the tuber. Also, less forcewas required to chip cassava tuber with longer length and shorter diameter probably due to the presence ofinner and central crack defects, which is capable of forming easy crack initiation points with the slightestblade effort. The size of the electric motor required was a single phase 1 hp (4500 rpm), which is capable ofpowering the machine to an approximate capacity of 225 kg/h and comparable to the required human effort.The machine was also found effective in chipping cassava tuber to average size of 30 mm.
- ItemDesign of a single screw extruder for homogenizing bulk solids(Agricultural Engineering International: The CIGR Journal, 2016) Adeshina Fadeyibi; Zinash Delebo Osunde; Gbabo Agidi; Egwim Chidi EvansThe research was conducted to design a single screw extruder from locally available materials for the mixing and homogenization of bulk solids, such as the composites of cassava and yam starch-glycerol with nanoparticles. The design was made by computing the hopper outlet size, shaft diameter, screw geometry, barrel volume and the capacity of the conveyor, empirically. The stresses in the conical section of the hopper were also evaluated to assess its load requirement, thus avoiding any problem associated with the flow of materials through the hopper opening. The extruder was dynamically simulated to assess its throughput at the feeding, compression and metering zones. This was done by investigating the dynamic effect of the time of operation, with respect to the linear displacement, velocity and power, from the practical motion of the moving auger by Computational Fluid Dynamics method. The results showed that the vertical pressure acting downwards and the shear stress within the section were 37.02 and 6.44 kPa. The shaft diameter and screw geometry, which includes screw pitch and angle, were 20 and 56 mm, and 16.54o. The capacity of the extrusion conveyor and its power requirement were respectively, 18.46 tons/hour and 2.04 kW. The maximum linear displacement and velocity occur at the compression zone at every 3.03 rev/sec, which cause the bulk solid materials to melt, and are pushed by the resulting pressure into the metering zone. The relationship between the linear displacement and the time of operation obeys the power law. Consequently, a 5 hp electric motor was selected to power the single crew extruder.
- ItemDesign, fabrication and testing of a machine for shelling Jatropha Curcas seed.(Published by Kwara State University Press, Nigeria, 2020) Adeshina Fadeyibi; Michael Efeturi Okolobah; Rasheed Amao Busari; Rukayat OladipupoJatropha curcas is a non-edible drought-resistant seed rich in oil. The seeds are usually shelled to obtain the kernels prior to the oil extraction. This research was undertaken to design, fabricate and evaluate a sheller for jatropha seed at different moisture contents. The moisture content of the seed was varied in the range of 6.8−12.2% (wb) and the machine performance was evaluated. Empirical relationships between the machine performance and the moisture content were established. The results showed that the shelling and machine efficiencies decreased with an increase in the moisture content. A quadratic relationship was established between the cleaning efficiency and the moisture content of the seed. The data obtained are found to fit the established equations with 65% R sq. value, and so can be used for predicting the machine performance within the specified moisture range. The power required to shell the seed was found to be 1 HP, and the technology was affordable compared to the ones reported in the previous designs. The machine can therefore be used for Jatropha curcas seed shelling at different moisture contents.
- ItemDesign, fabrication and testing of a machine for shelling Jatropha Curcas seed(Technoscience Journal for Community Development in Africa, KWASU Press, 2020) Adeshina Fadeyibi; Rasheed Amao Busari; Rukayat OladipupoJatropha curcas L. seed is a nonedible drought-resistant seed rich in oil. In the extraction of the oil, the seeds are shelled to obtain the kernels. Shelling manually requires so much labour and time. Thus, this research was carried out to design and evaluate the performance of the jatropha seed shelling machine so as to address the challenges with the manual method. The moisture content of the seed was varied in the range of 6.8- 12.2% (wb), and the machine performance was evaluated. The results showed that the shelling efficiency of the machine and the percentage of whole kernel recovered decreased with increase in seed moisture content; while the percentage of broken kernel, machine efficiency, and percentage of unshelled seed followed a sinusoidal trend with moisture content variation. The percentage of whole kernel recovered and shelling efficiency were 23.3% and 73% at 8.2% (wb), respectively. The machine can therefore be used for jatropha seed shelling at different moisture contents.
- ItemDesign, Fabrication and Testing of a Manually Operated Locust Bean Cubing Machine(Asian Journal of Applied Sciences, 2018) Mohammed Gana Yisa; Adeshina Fadeyibi; Salman AbdulHafeezBackground and Objective: Cubing is a process of consolidating bulk agricultural products to allow precise sizing prior to packaging and marketing. This research was undertaken to develop a locust bean cubing machine. Materials and Methods: The machine was designed to cube 2 kg of fermented locust beans with the help of a piston-connecting rod arrangement, as a conveying mechanism. A handle attached to the connecting rod provides the drive and force required for cubing and the resultant piston speed was computed empirically. Results: The results showed that the machine required a piston speed and pressure of 33 m secG1 and 25.1 kN mG2, respectively. Also, the machine was able to produce cubed locust beans of an approximate size of 0.06 m2. Conclusion: Thus, the cubing of locust beans condiment can be successfully achieved with the help of this machine.
- ItemDesign, Fabrication and Testing of a Manually Operated Locust Bean Cubing Machine(2018) Mohammed Gana Yisa; Adeshina Fadeyibi; Salman Abdul HafeBackground and Objective: Cubing is a process of consolidating bulk agricultural products to allow precise sizing prior to packaging and marketing. This research was undertaken to develop a locust bean cubing machine. Materials and Methods: The machine was designed to cube 2 kg of fermented locust beans with the help of a piston-connecting rod arrangement, as a conveying mechanism. A handle attached to the connecting rod provides the drive and force required for cubing and the resultant piston speed was computed empirically. Results: The results showed that the machine required a piston speed and pressure of 33 m secG1 and 25.1 kN mG2, respectively. Also, the machine was able to produce cubed locust beans of an approximate size of 0.06 m2. Conclusion: Thus, the cubing of locust beans condiment can be successfully achieved with the help of this machine.
- ItemDevelopment and evaluation of biomass-based alternative charcoal(Italian Society of Agricultural Engineering, 2020) Adeshina Fadeyibi; Kehinde Raheef Adebayo; Taiye Mayowa Obafemi; Abiodun Samson Olubo; Rasheed Amao Busari; Mohammed Gana YisaEnvironmental issues resulting from production and application of wood charcoal can be addressed by using biomass briquettes as alternative. This research was undertaken to develop and evaluate briquette from jatropha, groundnut and melon seed residues. Samples of the briquette were formed from mixtures of 0.32-0.39 kg carbonised residues, 0.30-0.40 kg starch and 0.02- 0.04 kg water. Physical and mechanical properties of the briquette samples including calorific value, bulk density and breaking force were determined using standard methods. Box-Bekhen Design Methodology was used to determine the optimum briquette blend. The results showed that the optimal briquette blend gave values of 4711.87 kcal.kg–1 calorific value, 282.59 kg m–3 bulk density and 1.36 kN breaking force, with a desirability index of 61.5%. A comparative analysis of the properties of the optimal briquette with that of a wood charcoal indicates no significant difference (P<0.05). This implies that the briquette can serve as an alternative energy source for cooking in rural communities.
- ItemDevelopment of a dually operated biomass briquette press(Songklanakarin Journal of Science and Technology, 2021) Adeshina Fadeyibi; Kehinde AdebayoTechnological transformation of biomass residues into briquettes is essential for industrial energy applications. This research was undertaken to design, fabricate, and test a dually operated screw press for briquette production. The machine was designed and fabricated using 0.3%-carbon steel, and its performance was evaluated for 30 min at an interval of 5 min. The efficiency increased with an increase in the resident time, and the values were approximately 95% and 80% at the end of the 30 min motorized and manual operations, respectively. The average capacity of the manual operation was 0.0025 kg s-1 and that of the motorized operation was 0.0055 kg s-1 . A single phase two horsepower electric motor was used to power the machine.
- ItemEffect of operating parameters on performance of a developed juice extractor(Adeleke University Journal of Engineering and Technology, 2021) Adeshina FadeyibiProcessing of fruits is essential to curtail postharvest loss. This research was carried out to design and evaluate a multi-juice extractor. The machine was designed and fabricated using locally source material and the performance was evaluated based on the perforation of the inner cylinder (2, 4, 6 mm), and speed of operation (50, 70, 90 rpm) using for 10 kg of orange and watermelon. The extracted juice was filtered with the sieve, and the residue discharged. Results showed that the best perforation of the cylinder was 6mm, while the optimum operating speed of the machine for juice extraction was 50 rpm for watermelon and orange fruits at the end of 5 minutes of operation. The machine was powered by 1hp electric motor, and it costs ₦ 92,200 relatively cheaper compared to conventional ones.
- ItemEffect of Residence Time on Performance of a Developed Drum Washer for Cleaning Sweet Potatoes(Adeleke University Journal of Engineering and Technology, 2021) Adeshina FadeyibiCleaning of heavily contaminated food produce is critical to its storage and processing. In this research, a drum washer was developed for the cleaning of freshly harvested sweet potato tubers. Operation parameters of the machine, including brush type (soft, semi-hard, hard), shaft speed (90-110 rpm) and lining material (steel, plastic, wooden) were simulated to determine the best process for effective machine design. The machine was developed based on the simulated parameters and its performance for washing 15 kg of the sweet potatoes was determined in 10 min operation. Results show that the semi-hard brush, plastic lining, and a speed of 90 rpm gave the lowest simulation error (e < 10-6). Also, the washing efficiency and throughput capacity were 90.6 % and 14.1 kg/min, respectively. The bruising efficiency was 10.0 %, which indicates effective washing with minimal tuber-flesh damage in the process.
- ItemEffects of osmotic dehydration pretreatment on freezing characteristics and quality of frozen fruits and vegetables(Journal of Food Process Engineering, Willey, 2022) Kehinde Peter Alabi; Ayoola Patrick Olalusi; Adesoji Mathew Olaniyan; Adeshina Fadeyibi; Lanre Olanipekun GabrielOsmotic dehydration (OD) is a process of soaking products in an aqueous solution containing salt or sugar, which is normally applied to fruits and vegetables. The combination of OD pretreatment with freezing, or osmotic dehydrofreezing (ODF), is a novel technology to shorten the freezing process and prolong the preservation of fruits and vegetables. However, the effectiveness of ODF is affected by process parameters and nature of the product, thus information on freezing characteristics and quality of osmotically dehydrated frozen fruits and vegetables is useful to the food industry. This review intends to provide an overview of the effects of OD pretreatment on freezing characteristics such as freezing rate, thermal properties, and quality of frozen fruits and vegetables. Fundamentals of ODF technology, including significance of OD to freezing, and mechanism and factors affecting ODF are summarized. In addition, hurdle technologies comprising of ODF and other innovative nonthermal techniques, such as ultrasound and pulsed electric field (PEF) are presented, and future trends of the combined technology are briefly discussed. ODF can accelerate the freezing process and enhance the quality of osmotically dehydrated frozen fruits and vegetables. The novel ultrasound and PEF techniques, which can provide cryoprotection from in situ interference, were proposed for the production of product with many‐functional characteristics, by incorporating bioactive compounds like plants sterols, probiotics, and dietary fibers, into the matrix of cellular tissues during ODF process. However, these techniques can enhance the performance of the ODF to promote fast freezing, produce small ice crystals, and raise glass transition temperature of cellular tissues. The future trends of ODF technology should mainly focus on controlling the mass and heat transfer processes, improving quality stability during glassy state storage condition and development of product with many‐functional characteristics. Practical Applications Fruits and vegetables are subject to freezing damage, particularly tissue softening and drip loss when thawing, thus reducing their quality and market value. OD pretreatments to freezing or ODF has great potentials in preservation of fruits and vegetables, with the advantage of minimum quality loss due to the reduction in freezing loads. Currently, innovative studies have been carried out on the combined use of OD pretreatments and emerging freezing techniques to improve the freezing process, achieve better quality with extended shelf life, and produce products with many‐functional characteristics. However, the findings presented in this review work can provide detail insights on the quality of fruits and vegetables that were frozen by ODF and give some guidance for further developments of ODF technology.
- ItemEffects of period and temperature on quality and shelf-life of cucumber and garden-eggs packaged using cassava starch-zinc nanocomposite film(Journal of Applied Packaging Research, 2020) Adeshina Fadeyibi; Zinash Delebo Osunde; Mohammed Gana YisaNanocomposite film can be used to prolong the shelf-life of fruits and vegetables. This research was undertaken to investigate the effects of packaging period and temperature on the quality and self-lives of cucumber and garden-eggs packaged using cassava starch-zinc nanocomposite film. Hundred grams each of cucumber and garden-eggs were wrapped in a 200× 350 mm size nanocomposite film and low density polyethylene (LDPE) of 2.240± 1.076 × 10-10 gm-1Pa-1s-1 water vapor and 1.568± 0.084× 10-10gm-1Pa-1s-1 oxygen gas permeability. The products were stored at 10−27oC temperatures and 0−9 day periods, and their quality attributes including β-carotene and ascorbic acid were determined. The results showed a high positive correlation for β-carotene and ascorbic acid contents of the cucumber and the garden eggs packaged in the nanocomposite film and the LDPE (p< 0.05). Also, the percentage increase in shelf-life of the packaged products in the cassava starch-zinc nanocomposite films was higher than those packaged in the LDPE materials. This indicates a small quality loss in the products packaged using the nanocomposite film compared with that packaged using the conventional LDPE. Hence, cassava starch-zinc nanocomposite film can be used to extend the shelf-life of the products.
- ItemEngineering and proximate properties of miracle berry fruit (Synsepalum dulcificum L.)(CIGR Journal- International Commision of Agricultural and Biological Engineering, 2021) Adeshina Fadeyibi; Wasiu Agunbiade lamidi; Sulaiman AdemolaThis research was carried out to determine some physical, mechanical, mineral, and proximate properties of miracle berry fruits (Synsepalum dulcificum L.) in the moisture range of 6.45%-9.73% (dry basis, db). Physical properties, including bulk density and terminal speed, were determined by standard procedures. Mechanical properties including stiffness and deformation were determined using quasi-static compression analysis. Proximate and mineral compositions of the fruit including crude protein and calcium contents were determined using standard analytical methods. Results showed that the terminal velocity, stiffness, mineral contents increased generally with a decrease in the moisture content (p < 0.05). The average values of the terminal velocity, stiffness, crude protein, calcium contents of the fruit at 6.45% (db) were 14.32 mm s-1 , 2.37 N mm-1 , 11.13% and 92.11 mg 100 g-1 , respectively. We recommended the values at 6.45% moisture content for minimal product damage during bulk transportation, and for the design of cutting equipment for the product. Citation: Fadeyibi, A., W. A. Lamidi, and S. M. Ademola. 2021. Engineering and proximate properties of miracle berry fruit (Synsepalum dulcificum L.) essential for its processing equipment design. Agricultural Engineering International: CIGR Journal, ? (23)4: 227-235.
- «
- 1 (current)
- 2
- 3
- »