Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Adebowale Martins Obalalu"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Heat transfer analysis of thermal radiative over a stretching curved surface using molybdenum disulfide and silicon dioxide composite material under the influence of solar radiation
    (2024) Adebowale Martins Obalalu; Adil Darvesh; Lateefat Aselebe; Sulyman Olakunle Salawu; Kazeem Issa
    PurposeThe primary focus of this study is to tackle a critical industry issue concerning energy inefficiency. This is achieved through an investigation into enhancing heat transfer in solar radiation phenomena on a curved surface. The problem formulation of governing equations includes the combined effects of thermal relaxation, Newtonian heating, radiation mechanism, and Darcy-Forchheimer to enhance the uniqueness of the model. This research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology. A mixture of silicon dioxide (SiO_2)\ and Molybdenum disulfide (MoS_2) is considered for the nanoparticle’s thermal propagation in base solvent propylene glycol. The simulation of the modeled equations is solved using the Shifted Legendre collocation scheme (SLCS). The findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. Furthermore, the heat transmission progress increases against the curvature and thermal relaxation parameter.Design/methodology/approachShifted Legendre collocation scheme (SLCS) is utilized to solve the simulation of the modeled equations.FindingsThe findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. The heat transmission progress increase against the curvature and thermal relaxation parameter.Originality/valueThis research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology.
  • Loading...
    Thumbnail Image
    Item
    Unsteady Radiative Magnetohydrodynamic Flow over a Chemically Reacting Porous Stretching Plate Considering the Soret Effect
    (2025) Ankur Kumar Sarma; Dipak Sarma; Sunmoni Mudoi; A. Dauda Adeshola; Kazeem Issa; Abdul Azeez Kayode Jimoh; Adebowale Martins Obalalu
    The analysis of unsteady MHD flow over a porous stretching plate is critical for various engineering applications, particularly in systems involving chemical reactions and thermal radiation. This study explores the novel effects of heat and mass transfer in a two-dimensional unsteady magnetohydrodynamic (MHD) flow. This present work examines the effects of radiation and a transverse magnetic field on a chemically reacting fluid flowing over a stretched plate. The unsteady nature of the flow is associated with the time-dependent variations in stretching/extending velocity, temperature, and fluid concentration. The nonlinear governing boundary layer partial differential equations (PDEs) are transformed into a set of nonlinear ordinary differential equations (ODEs) using a similarity transformation, which are then numerically solved using the MATLAB bvp4c method. The flow, heat, and concentration profiles are quantitatively analysed through graphs for various problem parameters, including the unsteadiness parameter (A), Hartmann number (M), porosity parameter (Sp), radiation parameter (N), chemical reaction parameter (K), Soret number (Sr), Eckert number (Ec), Schmidt number (Sc), and Prandtl number (Pr). Additionally, the skin friction coefficient, Nusselt number (Nu), and Sherwood number (Sh) are numerically addressed and illustrated using graphs.

KWASU Library Services © 2023, All Right Reserved

  • Cookie settings
  • Send Feedback
  • with ❤ from dspace.ng