Browsing by Author "A. A. Yahaya"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDr(Acta Physica Polonica A, 2024-04-03) A. A. Yahaya; W. A. Yahya; A. S. Ahmed; A. A. SholagberuDevice applications in magnetic media, spintronics, oxygen membranes, sensors, etc., are some of the uses of ferrite materials. In this work, we have studied the structural, electronic, magnetic, mechanical, and thermoelectric properties of Cs-based double perovskites Cs 2 AX 6 (A = Ge, Mn; X = Cl, I), using Quantum Espresso with generalized gradient approximation Perdew–Burke–Ernzerhof and Perdew– Burke–Ernzerhof in solids exchange–correlation functionals. The band structure results show that Cs 2 GeCl 6 and Cs 2 MnCl 6 are semiconductors with direct band gaps. However, there are bands crossing observed for Cs 2 GeI 6 from the conduction band minimum to the valence band maximum, indicating the metallic nature of the material. Moreover, Cs 2 MnI 6 has magnetic properties; it exhibits a metal- lic nature in the spin-up state and a semiconductor nature in the spin-down state, suggesting that it can be used in spintronics applications. The calculated total magnetic moment of Cs 2 MnCl 6 is 3.0µ B (for both Perdew–Burke–Ernzerhof and Perdew–Burke–Ernzerhof in solids), while for Cs 2 MnI 6 , the calculated total magnetic moments are 3.02µ B and 3.06µ B , for Perdew–Burke–Ernzerhof and Perdew– Burke–Ernzerhof in solids exchange–correlation functionals, respectively. The results of the mechanical properties calculations show that Cs-based double perovskites Cs 2 AX 6 (A = Ge, Mn; X = Cl, I) are mechanically stable. Cauchy’s pressure and Poisson’s, Frantsevich’s, and Pugh’s ratios of the studied materials confirm that Cs 2 MnCl 6 is brittle, while the remaining studied double perovskite materials are ductile. Electrical conductivity, thermal conductivity, Seebeck coefficients, power factor, and figure of merit are the thermoelectric parameters analyzed in this study. Seebeck coefficients, electrical con- ductivity, and power factor increase with the rise in temperature, and Cs 2 MnX 6 (X = Cl, I) double perovskite materials have higher values of electrical conductivity than Cs 2 GeX 6 (X = Cl, I). All the studied materials have positive type conductivity due to their positive Seebeck coefficient values.
- ItemEffect of hydrostatic pressure on opto-electronic, elastic and thermoelectric properties of the double perovskites Rb<sub>2</sub>SeX<sub>6</sub>(X=Cl,Br): a DFT study(2024-02-11) A. A. Yahaya; W. A. Yahya; I. A. RahmonDouble perovskites find applications across a diverse range of situations and varying pressure conditions. In this work, Quantum ESPRESSO code with a plane wave basis set was used to study the opto-electronic, elastic, and thermoelectric properties of Rb2SeX6 (X=Cl, Br) double perovskites under hydrostatic pressure (0 - 8 GPa). Perdew-Burke-Ernzerhof for Solids (PBESol) with generalized gradient approximation (GGA) was used as exchange-correlation functional. The band gap values of the materials decrease under hydrostatic pressure. Rb2SeCl6 has a band gap value of 2.44 eV at 0 GPa, 2.21 eV at 2 GPa. Above 2 GPa, the material has a metallic nature. Rb2SeBr6 has a band gap value of 1.56 eV at 0 GPa, but has a metallic nature under hydrostatic pressure (2 GPa to 8 GPa). The optical properties results indicate that the materials exhibit maximum absorption, high reflectivity, low optical loss in the visible and ultraviolet regions, good optical conductivity, and a refractive index suitable for use in opto-electronic applications. The materials are confirmed to be mechanically stable under all the hydrostatic pressure values studied. Electrical conductivity, thermal conductivity, and Seebeck coefficient (S ) values of the studied materials increase with an increase in hydrostatic pressure and temperature. The maximum value of S for Rb2SeBr6 is 0.248 x 103 (m V/k), while for Rb2SeCl6, maximum S = 0.175 x 103 (m V/k). The positive values of S suggest that the predominant charge carriers of Rb2SeCl6/Br6 are holes. Also, Rb2SeBr6 has a figure of merit (ZT) value of 3.44, while for Rb2SeCl6, ZT = 1.07. Since the values of ZT are greater than unity, the two double perovskite materials have good ZT values for thermoelectric device engineering. The results also suggest that Rb2SeBr6 is a better thermoelectric material than Rb2SeCl6.